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Abstract 

Biosurfactants are gaining attention because they are biologically obtained and can substitute 

for fossil oil-driven surfactants. One important type of glycolipid biosurfactant is the mannosylerythritol 

lipid (MEL), produced mainly by Ustilaginomycetes and Moesziomyces spp.. Optimal use of the 

metabolism potential of these organisms can help in biotechnological development to make MEL 

production competitive. This was achieved with an in silico overview and accurate predictions of the 

experimental situations. 

Since Moesziomyces metabolic network is not coded in any available database, a recent 

genome-scale metabolic model for metabolic activity modeling of Ustilago maydis needs to be updated 

for use with Moesziomyces strains, as these producers of MEL have high genome similarity. The 

majority of the metabolic problems in the model are related to specific metabolite production that does 

not occur in Moesziomyces and the presence of dead-end reactions. MATLAB software and COBRA 

toolbox were used to obtain a more accurate model.  

Exponential batch and fed-batch cultivations with glucose were employed to test growth and 

MEL production. These values were given as input to the model, which predicted values with higher 

error values than U. maydis values, by applying the constraint-based model approach. With more 

experimental data and other analytical techniques, this upgraded model will enable both biotechnological 

applications and investigation of metabolic responses to various environmental conditions. 

Keywords: Metabolic modelling; Flux Balance Analysis; Mannosylerythritol lipids; Moesziomyces; 
MATLAB; Ustilago Maydis. 

 

    1. Introduction 

Nowadays it is important to have a sustainable alternative to fossil-driven surfactants, since 

surfactants' manufacture, usage, and disposal can affect the environment. Surfactants are utilised in the 

production of a wide range of products, including cosmetics, home detergents, and medications. 

Delivering a more environmentally friendly surfactant alternative to chemical surfactants is possible with 

microbial surfactants, classified as “biosurfactants”.[1] Some of the advantages of biosurfactants are the 

increase in the bioavailability of insoluble nutrients, allowance of adhesion of microorganisms to 

hydrophobic surfaces, and antibiotic activity.[2] Nonetheless, due to their high production costs, they are 

hardly assessing the market. The knowledge gained from the metabolic engineering of microbial lipids 

for biofuel production can be used for effective synthesis, diminishing the production costs problem.     

 Mannosylerythritol lipid (MEL) is classified as a glycolipid type of biosurfactant, constituted by a 

hydrophilic sugar, 4-O-β-D-mannopyranosyl-D-erythritol, that compresses a mannose and an erythritol 

residue and a hydrophobic tail, consisting of two fatty acid chains. These chains are in the C2 and C3 

of the pentose sugar structure of mannose (Fig.1) and according to the degree of the carbon acetylation 
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at C4 and C6 position of mannose, it is possible to obtain four MEL homologs. The length of each fatty 

acid residue is influenced by the respective producer organism, the Moesziomyces yeast (previously 

referred to in the literature as Pseudozyma), of Ustilaginaceae family. [3,4] [5] The process engineering 

of MEL production, however, lacks some knowledge, with few research on the characterization of 

Ustilaginaceae fungal growth factors such as growth rates, substrate consumption, biomass yield, or 

oxygen demands. As so, it would be interesting to get a deeper insight into how those growth parameters 

and the resulting biomass concentration are related to successive MEL production.[4]  

      

Figure 1 – General structure of di-acylated mannosylerythritol lipid. (MEL-A: R1=R2=Acetyl; MEL-B: R1=Acetyl 
,R2=H; MEL-C: R1=H, R2=Acetyl, MEL-D: R1=R2=H). Variable chain-length and saturation of fatty acid side-chains 
at C2 (m= 2–16) and C3 (n= 2–10). [4]             

 MELs are generally produced by the fungi Ustilago maydis, in relatively low levels, and 

Moesziomyces spp. (previously Pseudozyma spp.), in relatively high numbers, in terms of substrate, 

fermentation environment, and downstream processing.[6][7] Comparative genomic and transcriptome 

studies between U. maydis and a strain belonging to Moesziomyces species, M. antarcticus, have 

indicated that the gene expression pattern of M. antarcticus differs dramatically of U. maydis under 

certain conditions. According to this study, even if the gene expression profiles of the two species 

diverge, they are closely related at the genome level, since the genome organisation and gene content 

are almost identical. [5]   

The sugar core of MELs is produced by binding an erythritol molecule, through the pentose 

phosphate pathway, onto GDP-mannose, obtained via glycolysis, from several hydrophilic precursors. 

The hydrophobic tail is formed of fatty acids that can be added to the culture medium and integrated into 

the MEL or synthesized de novo by the microorganism. Partial peroxisomal β-oxidation, is another step 

of MEL metabolism, giving MEL’s unique fatty acid patterns, since it provides fatty acids for MEL’s 

acylation. [8] Finally, MEL synthesis is established via mitochondrial β-oxidation, the glyoxylate cycle, 

and gluconeogenesis, which converts the corresponding precursor molecules to the final product and 

establishes the link between fatty acid and sugar metabolism. A review of the most important metabolic 

pathways already stated was constructed using U. maydis as the model organism and compared to 

genomic data for various MEL-producing strains (Fig.2). [9] To forecast genetic modifications that 

rearrange the metabolism toward the generation of the compound of interest, metabolic modelling is 

required.  

The implementation of experimentally determined constraints can be used to convert a 

metabolic model into a condition-specific model.  Constraints can be established by defining flux bounds 

for each reaction, for example. The outcome is an in silico forecast of steady-state flow through each 

reaction in the model, such as a prediction of the maximum optimal growth rate of the cell. Growth can 
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be simulated under a variety of conditions, by varying the limits on the exchange reactions that operate 

as sources of substrate and waste metabolites, different circumstances can be simulated as well. Flux 

balance analysis (FBA) can be used to analyse constraint-based models by the constraint-based 

reconstruction and analysis (COBRA) strategy. [10] [11] 

 
Figure 2 – Detailed metabolic pathways that lead to the formation of MEL from various substrates in U.maydis. [9]  

 

2. Materials and Methods  

2.1 MEL production 

2.1.1.  Microorganisms and maintenance  

Mannosylerythritol lipids were produced by Moesziomyces yeast strains, Moesziomyces 

antarcticus PYCC 8538T (CBS 6678) and Moesziomyces bullatus (previously referred as M. aphidis) 

PYCC 5535T (CBS 6821) provided by the Portuguese Yeast Culture Collection (PYCC), CREM, 

FCT/UNL, Caparica, Portugal. The strains were plated and incubated for 3 days at 30°C. Stock cultures 

of each species were prepared from the plates, by growing each strain in liquid medium and stored in 

20% (v/v) glycerol aliquots at - 80ºC. 

2.1.2. Media and cultivation conditions  

An inoculum was prepared according to the procedure referred to in the literature. [12] The 

glycerol stocks of M. antarcticus was transferred to an erlenmeyer flask, with 50 mL of a mineral medium 

(3 g/L NaNO3, 0.3 g/L MgSO4.7H2O, 0.3 g/L KH2PO4, 1 g/L yeast extract) and 40 g/L D-glucose, at initial 

pH 6.0. All were previously sterilized in an autoclave at 121 °C and 1 bar, for 20 minutes.The inoculum 

was then incubated in an orbital (Shaking incubator 2000) for 48 hours at 200 rpm and 27°C. After, 10% 

(v/v) of the inoculum was used to start the fermentation in fresh media. Initially, 10% (v/v) of the inoculum 

was used to start the fermentation in fresh media, with five different conditions of glucose concentration, 

5 g/L, 20 g/L, 40 g/L, 80 g/L, and 120 g/L, with an initial OD below 0.1 in all the 250 mL erlenmeyer 

flasks. The inoculated erlenmeyer’s were shaken at 200 rpm at 27°C up to 168 hours. Growth rates and 

glucose uptake rates were estimated using experiments carried out for this study and data from the 

literature.[13,14] 
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2.1.3. Yeast cultivation parameters  

2.1.3.1. Cell dry weight 

To analyse biomass growth, the dry cell weight (DCW) was measured in the samples taken 

during the cultivation time. The culture broth was recovered, and 1 mL samples were centrifuged 

(Sartorius 1-15P, Sigma) at 10000 rpm for 5 min, resulting in the supernatant and the pellet, which was 

washed twice with Milli-Q® water and left to dry at 60°C in the oven (Memmert) for, at least, 48 hours. 

The dry biomass was then weighed, and the DCW value was calculated. 

2.1.3.2. Optical density (OD)  

Optical density (OD) determination at 600 nm on a spectrophotometer (UH5300 Hitachi) allowed 

monitoring cell development in real-time. The OD measurement values of growth from the literature were 

converted into units of gDCW/L using the empirical relation from the yeast of 0.62 gDCW/L/OD (BNID 

111182). [15] The DCW conversion coefficient value used for growth in M. antarcticus was 0.30 g 

DCW/L/OD600. [16] A linear relationship of the exponential growth phase was reached with the ln(OD) 

over time (Equation A1). The growth rate of each condition was obtained with the slope value of each 

condition. [17] 

2.1.4 Substrate quantification 

The previously collected supernatants were first diluted with H2SO4 0.05 M solution, in a 

proportion of 1:20, and centrifuged (Sartorius 1-15P, Sigma) at 10000 rpm for 5 min, to precipitate any 

cellular content that remained in the sample. Following that, they were transferred to a high-performance 

liquid chromatography (HPLC) vial. The sugar quantification was performed by HPLC, as described in 

the literature.[13] The substrate uptake rates were estimated with a linear equation and converted into 

mmol/gDCW/h (Equation A2). [17] 

2.1.5. MEL and fatty acids quantification 

The methyl ester derivatives were prepared to allow the quantification of MEL and fatty acids 

with feeding of different concentrations at day 4. The obtained mass of each sample was weighted, 

giving the theoretical mass value, and transferred to a glass tube, where the sample was once more 

weighted, giving the experimental mass value that later was transesterified. The experimental protocol 

procedure was followed according literature [13] and MELs were analysed by Gas Chromatography 

(GC) system (Hewlett-Packard, HP5890). The flux of MEL, also denominated productivity of the reaction, 

was obtained from the values obtained by GC analysis. The values of MEL and fatty acid concentration, 

with units of g/L, were used to find the fluxes, using mmol/g DCW/h units.  

2.2. Simulation of yeast metabolism in MEL producing cells 

In silico simulation of yeast metabolism was performed using COBRA (Constraint-based 

Reconstruction Analysis) toolbox and MATLAB R2021a software. [18] The metabolic model used was 

iUma22, the first genome-scale metabolic model (GSMM) of Ustilago maydis, reconstructed from 

sequencing and annotation for the simulation of metabolic activities and is characterized by 1855 

reactions and 1233 species of metabolites. Through experiments with glucose growth, the model's 

quality was evaluated and the precision of rate predictions was examined. [19,20]. Until the moment 

there is not a described MEL metabolism model for M. antarcticus.  
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2.2.1. Pathways Reconstruction 

The available model for U. maydis, retrieved from GitHub database, was modelled with MATLAB 

as the programming computing platform where fluxes constraints values should be added. However, the 

desired model for MEL synthesis has to consider the metabolism characteristics of M. antarcticus, the 

desired organism to do this biosurfactant production, and the highlighted differences between the two 

microorganisms (Chapter 1.3.). Of the 1855 coded reactions, the reactions that belong to pathways 

leading to the production of the two principal key building blocks, D-mannose, and erythritol, were 

manually selected. The metabolic pathways of these reactions are glycolysis with glucose as substrate, 

gluconeogenesis from glycerol derived from oil substrate, the pentose phosphate pathway, and the 

tricarboxylic acid cycle.  

2.2.2. Flux Balance Analysis 

The prediction of an ideal steady-state flow vector that maximizes a microbial biomass production 

rate is a common use of the flux balance analysis (FBA).[21] The versatile function optimizeCbModel 

can be used to compute FBA and many of its variants. [22] The flux balance analysis approach can 

be used to calculate growth rates of U. maydis on glucose, or it can also be used to simulate growth on 

other substrates. Nonetheless, the objective of this work is to upgrade the available GSMM for MEL 

production by Moesziomyces antarcticus. The model presented contains some reactions that do not 

exist on M. antarcticus and need to be deleted. As so, the first procedure was to delete 15 reactions and 

consequently eliminate 11 metabolites related to the production of Ustilagic Acid (Fig.A1). This was 

possible using the command: >> model = removeRxns(model, rxnRemoveList); 

The model contains three distinct compartments: the cytosol, the mitochondria, and the 

extracellular space. Another organelle existent in M. antarcticus, which may be important for the correct 

metabolism, and was already covered as being crucial to enable the production of Mannosylerythritol 

lipids by oils as substrate, is the peroxisome. In order to allow the synthesis of MELs by the stoichiometric 

model, it was necessary to add an exchange reaction for oils and to link the dead-end reaction present 

in the model, which produced fatty acids, to the lipids metabolism (Fig.A2). The command throughout is 

possible to add reactions in the COBRA toolbox is the following:  

>>[model, rxnIDexists] =addReaction(model, ‘rxnID’, ‘reactionFormula’, 

‘Formula’, varargin) 

Simulation experiments were carried out with different values for glucose maximum uptake rate 

in units of mmol g DCW-1 h-1. To simulate various media, all metabolites present in the media should 

have exchange reactions with lower bounds constrained to their intended uptake rate, while all the 

metabolites that are not present in the cell should have exchange reactions with values for lower bounds 

confined to zero. [10] Since in this case, the goal was to maximize the conversion of known metabolites 

such as erythritol and GDP-mannose in mannosylerythritol, the objective reaction of the model was 

changed with the following command, to retrieve an FBA solution value that represents the maximization 

of production of MEL D, one of the four homologs of MEL:  

>> model = changeObjective(model,‘MAC2’);  
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3. Results and Discussion 

3.1 In silico metabolism of Ustilago Maydis model 

A metabolic flux model that describes the main metabolic pathway used for MEL production was 

designed, focusing on the production of mannosylerythritol (ME) and lipids. This model describes 

specific cell features concerning central carbon metabolism and cell bioenergetics, highlighting the 

pathways for the production and assembling of the MEL building blocks. Pathways dynamic visualization 

makes it possible to see where the fluxes values retrieved by MATLAB are present on the cell. (Fig.A3)  

The FBA approach was used to calculate the growth rates of U. maydis on glucose media, and 

flux values constraints were applied to understand how the reactions in the model change their flux 

values accordingly. Imposing different flux values for a substrate, should have a complex response in 

the metabolism. As so, at least one of the reactions in the model must have a constrained lower or upper 

bound, for the estimated fluxes to be meaningful. [23] The attributed values for fluxes will generate a 

solution, according to the premise that the objective function must be optimised [24]and the solution 

value should be a value of flux, that corresponds to the organism's exponential growth rate, when 

biomass reaction is the objective reaction.  

3.1.1. Deleted and added reactions from Ustilago maydis model  

The Ustilago maydis model, iUma22, to being upgraded to a Moesziomyces Antarcticus model, 

needed to suffer the deletions of reactions and metabolites that are present in U. maydis, but not in M. 

antarcticus. The reactions leading to the production of Ustilagic Acid were deleted, and the FBA solution 

values were obtained having biomass equation and MEL production as objectives. All the predictions 

were performed with the same constraint. The values obtained (Table A1) showed some flux values 

slightly different from the values obtained with iUma22 model, in the condition where biomass reaction 

was the objective reaction. The value of flux of NH4, H2O, malate, and the absence of entry of glycerol 

are the four fluxes that registered changes. With the maximization of MAC2 reaction, the reaction that 

leads to the production of MEL-D, the biomass reaction does not present any flux. The entry of oxygen 

(O2) is 0.00 mmol/gDCW/h with MEL production as the objective, that also presented the production of 

CO2. The glycerol flux value is also lower, which means that the flux of production is decreased.  

 The GSMM presented for U. maydis also lacks some reactions present in M. antarcticus. Since 

peroxisome is not present in this model, the main pathways that are lacking are related to lipids' 

metabolic reactions. The addition of reactions lead to minimal changes in the flux values, compared with 

values obtained to the iUma22 model without this modification. Compared with values obtained for 

biomass optimization, residual flux values were registered to the production of Ca2, while values of 

production of malate diminished 2% of the value obtained in the original model.  

3.2. The effect of glucose on growth and MEL production of Moesziomyces 

antarcticus - Batch cultures at different glucose concentrations 

With the experiment described in the previous chapter, M. antarcticus strain growth rate values 

were assessed with glucose as a carbon source. The objective of these experiments was to retrieve the 

yeast growth rate values, to compare with values from the literature obtained with U. maydis, and to 



7 
November 2022 

understand if the model is predicting values close to the ones getting experimentally. The substrate 

uptake rate values were also calculated to have values from flux with glucose, possible to apply in the 

model as a constraint. These were achieved with the HPLC technique of sugar quantification and are 

represented at Table 1. The growth rate value for each condition was also obtained, and both values 

were compared with literature values reached with similar conditions, but using U. maydis as the 

organism, instead of M. antarcticus. Different initial concentrations of glucose were considered, and the 

respective substrate uptake rates were applied as glucose input constraints, to have the corresponding 

predicted growth values given by MATLAB. It was possible to compare the experimental and the in silico 

outputs and the values obtained were registered between 5% and 9% with U.maydis, with the maximum 

glucose concentrations having values of 122% of error and the lower value registering 47%. The lower 

value of this experiment should not be considered, since the value obtained as substrate uptake rate is 

not realistic, since it is a very high value, and the biomass values obtained registered some outliers. [19]  

Table 1 – Growth rate (h-1) values and substrate uptake values (mmol/gDCW/h) obtained with experiments 
described in the literature with U. maydis [19,25] and obtained in this work with M. antarcticus having glucose as 
the carbon source. The values are presented in order of increasing initial glucose concentration. 

As it is possible to conclude, the highest values of both growth and substrate rate are obtained 

with the lowest concentrations of glucose in the experiment here described with 4 g/L of glucose, as 

expected. This assumes that the iUma22 model was not constructed to predict conditions of low glucose 

concentrations, which is in accordance with the unrealistic high substrate-uptake values obtained with 

M. antarcticus in this work. The growth rate value of 0.03 h-1, obtained when 40 g/L of glucose is used 

to feed M. antarcticus strain, is not realistic, as the excepted value should be in the range of 0.16 h-1 – 

0.25 h-1, as previously described.[4,25] Regarding the substrate uptake values, the highest values 

reached with each strain, are obtained at the same conditions that the higher values of growth rate, with 

77 g/L of glucose with M. antarcticus and with 50 g/L of glucose with U. maydis.  

After the experimental comparison with data obtained for U. maydis strain, it was necessary to 

obtain the predicted growth values from MATLAB with the iUma22 model to the glucose flux values 

obtained experimentally with the M. antarcticus strain. Even if the error was 390% when 120 g/L of 

glucose was used, the other error values were between 3% and 83%, which can be compared with the 

values obtained for U. maydis, which were between 5% and 47%. In both ranges of values, the higher 

concentration values, 120 g/L in M. antarcticus and 200 g/L in U. maydis, were not considered. 

Experiment 
(glucose g/L) 

Initial 
Concentration 

(g/L) 

Substrate-
uptake 

(mmol/gDCW/h) 

Growth Rate (h-1) 
Experimental      Predicted 

Error 
(%) 

M. antarcticus 5 g/L 4 2.05 0.16 0.16 3 

M. antarcticus 20 g/L 15 2.30 0.20 0.18 11 
U. maydis 20 g/L [19] 19 6.24 0.27 0.51 47 

M. antarcticus 40 g/L 32 0.43 0.03 0.02 83 

U. maydis 50 g/L [19]  50 2.20 0.18 0.17 7 

U. maydis 50 g/L [25] 54 1.22 0.08 0.09 6 

M. antarcticus 80 g/L 77 2.69 0.18 0.21 12 

U. maydis 100 g/L [25] 106 0.67 0.04 0.04 5 

M. antarcticus 120 g/L 121 0.37 0.06 0.01 390 

U. maydis 130 g/L [19]  126 1.10 0.07 0.08 7 

U. maydis 130 g/L [19]  132 0.74 0.04 0.04 9 

U. maydis 200 g/L [19]  203 0.33 0.02 0.01 122 

U. maydis 200 g/L [19]  216 0.36 0.02 0.01 122 
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3.3. Fitting of experimental results with modelled results 

With the values obtained experimentally with the M.antarcticus strain a fitting of the values to 

the iUma22 model was desired. With this fitting, the parameters that differ between the Ustilago Maydis 

strain and Moesziomyces antarcticus strain should be adjusted, turning the model presented in one 

closer to the Moesziomyces species. 

3.3.1. Moesziomyces antarcticus fitting model for growth 

The first comparison, already made on the values obtained to biomass growth, with glucose only 

added at day 0, was previously described. The experimental values obtained with M. antarcticus strain 

and the values with U. maydis retrieved from literature were compared (Fig.3). The two strains exhibited 

a good value of R2, even if a lower value was obtained with M. antarcticus strain, as shown in the linear 

equations. Another approach was to use different data sets from the ones used until now, employing a 

different carbon source, but still with M. antarcticus strain, and see if the model can predict growth rate 

values as well as it predicted when glucose was used as a carbon source. Xylose experimental results 

were taken from the literature [13,14], and knowing that the same strain was utilised in those 

experiments, FBA approach was again employed to predict the values of biomass growth. The error 

obtained in an experiment with 40 g/L xylose added on day 0 was 170 %. As it is possible to retrieve, 

compared to the error values obtained with glucose with the same strain (Table 1), this value is double. 

 

 Figure 3 - Comparision of values of experimental rates. Growth rate (h-1) and substrate uptake rate (mmol/gDCW/L) 
values were obtained experimentally with U. maydis (orange) and M. antarcticus (blue). U. maydis values were 
retrieved from the literature [19] and the linear regression line equation is y=0.09x-0.017 with an R2=0.98, while M. 
antarcticus values presented an equation equal to y=0.07x+0.024 with an R2=0.94.  

3.3.2. Moesziomyces antarcticus fitting model with MEL optimization 

To understand if the value of fluxes for the metabolite of interest was predicted accordingly the 

objective function of the model was changed from biomass reaction to MAC2 reaction, with the final goal 

of producing at least one MEL homolog. The first approach was to understand if the same values were 

obtained in silico, without having any change in the U. maydis model. This was done by maximizing the 

reaction and applying the flux values of glucose experimentally obtained to the reaction of glucose 

uptake, D-Glucose exchange reaction. In Table 2 is possible to compare the flux values obtained 

experimentally and compare those with the predicted values given by the in silico approach employed. 

The difference between the values are bigger than the values obtained from the comparison of growth 

values. Since the majority of the values were retrieved from work previously reported in the literature, it 

y = 0.0663x + 0.0241
R² = 0.9383
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was also possible to acquire the error generated between the values predicted with xylose. The values 

of error in percentage surpass 50% with values from fed-batch glucose experiments, between 56% and 

67%. With xylose fed-batch experimental values, the error presented was higher than 1000%. 

Table 2 - Substrate uptake rate values (mmol/gDCW/h) with glucose and xylose as carbon source, with values 
obtained experimentally through fed-batch on this work (Glu. Ant. 40g/L + 40 g/L) and retrieved from the literature, 
[14] comparing the experimental values with the value predicted retrieved through MATLAB. Glu.40:Glu.80, 
Glu.80:Glu.40 and Glu.80:Glu.80 – 40 g/L or 80 g/L of glucose at day 0 and addition of 40 g/L or 80 g/L of glucose 
at day 4. Xyl.40:Xyl.40 and Xyl.40:Xyl.80 - 40 g/L of xylose at day 0 and the addition of 40 g/L and 80 g/L of xylose 
at day 4, respectively. 

 

4. Discussion  

The model iUma22 was constructed with Ustilago maydis as the organism of reference. All the 

principal metabolic routes that allow the production of MEL are present, however, is necessary to notice 

the absence of peroxisome in this model. Nevertheless, the organism of interest is not U. maydis, but 

rather the Moesziomyces specie. With the pathways highlighted and applying the constraint of the input 

flux value of glucose on the cell, was possible to obtain the predicted values of growth on this model, 

which were compared to growth rate values obtained to U. maydis. These only showed a difference 

between 5% and 9% of the experimental values, obtained with glucose concentrations between 50 g/L 

and 130 g/L. The values obtained for lower concentrations or high values of glucose showed a difference 

of more than 47%, meaning that the model has a good prediction for most of the inputs, but has to be 

well curated with lower and higher values of glucose. 

To understand how the predictions of the model differ when employing values obtained with M. 

antarcticus and not with U. maydis, fermentations with glucose as a carbon source were realized, and 

after the results were compared with the predicted values of the model. The comparison between the 

growth rate values and the substrate uptake values showed that the growth of both organisms on 

glucose is substrate inhibited, as higher values of initial glucose concentration present lower values of 

both growth and substrate uptake rate. This was already mentioned by the authors in the literature. [19]  

It was expected that the predicted growth rates obtained with MATLAB to experimental growth 

values with M. antarcticus, presented a slightly higher difference than with U. maydis, which was shown 

in Figure 3. A graph with the experimental values of growth rate and substrate uptake rate, in contrast 

to the values of these rates predicted in silico, showed that the model needs more curation to have a 

perfect fit from the experimental values. Nevertheless, as observed in Figure 4, this difference is very 

low, explained by the fact that the model used to do the predictions was not curated to be used with the 

organism of this work.  

The values of MEL and lipids concentration previously obtained [14] were also analysed, to compare 

the flux production value of MEL with in silico approaches. Comparing the error values between the 

Experiment 
Substrate-uptake 

(mmol/gDCW/h) 

Experimental MEL 
production flux 
(mmol/gDCW/h) 

Predicted MEL 
production flux 
(mmol/gDCW/h) 

Difference 
Error 

(%) 

Glu.40:Glu.80 1.049 0.045 0.138 0.09 67 

Glu.80:Glu.40 1.015 0.052 0.132 0.08 61 

Glu.80:Glu.80 0.800 0.044 0.099 0.05 56 

Xyl.40:Xyl.40 0.307 0.108 0.007 0.10 1440 

Xyl.40:Xyl.80 0.300 0.083 0.006 0.08 1275 
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values obtained experimentally and the values predicted, when MEL production was optimised, the 

values of error obtained are higher than the errors with biomass optimization. This means that the 

predictions are more accurate when the growth of the cell is the objective and not when MEL production 

is maximized. This could be explained with the model being recently released and optimized to have a 

fitting for growth, and not to specific metabolites. 

 

Figure 4 - Growth rate and substrate uptake rate experimental values obtained with M.antarcticus strain in batch 
experiments with different glucose (blue crosses)  in contrast to the linearity obtained to growth rate values with the 
same substrate uptake rate value, predicted in silico with the iUma 22 model (black dots). 

5. Conclusion and Future Prospects 

The present model was not constructed to have predictions of very low or very high values of 

glucose concentration, since it is just possible to achieve some linearity in the data between 40 g/L and 

130 g/Lf glucose. Even if the growth values and substrate uptake values obtained with M. antarcticus 

were not that different from the ones obtained in the literature with U. maydis [19] not having duplicates 

of any experiment could also influence in this difference. However, the predicted values of flux for MEL 

production presented a bigger discrepancy than the ones obtained experimentally. Thus, to have a 

higher level of confidence in that values, other analytical approaches could be used. Nuclear Magnetic 

Resonance (NMR) experiments can enable the establishment of the flux distribution by 13C-NMR 

experiments. Because the reconstructed networks are carbon mapped, they may be used in 13C flux 

research, which will be valuable to understand which ratio of carbon follows which route and if the model 

is predicting accordingly with that flow. By combining genomics, RNA-seq, and NMR data, as well as 

transcriptomics and metabolomics studies, it may be possible to better understand not only the MEL-

cluster behavior but also the key genes involved in its regulation, [26] enabling the achievement of a 

more accurate metabolic model of Moesziomyces.  

In conclusion, with the in-silico model working properly and having the structural analysis 

obtained by 13C-NMR experiments, current bottlenecks in MEL production using Moesziomyces strains 

could be identified. The final objective is to reach logical strategies to produce this biosurfactant, 

increasing substrate carbon use efficiency, and bringing biosurfactant economic costs to be competitive 

with fossil oil-driven surfactants. Bioinformatics is thus the answer to many of the laboratory's arduous 

and time-consuming experiments. Machine learning and data science are growing methods in the 

bioprocesses industry, and utilising well-curated cell models could help to predict accurate experimental 

values without the necessity of dispendious work.  
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Appendix 

 

𝑙𝑛𝑋=𝑙𝑛𝑋0+𝜇(𝑡−𝑡0) 

Equation A1 – Exponential growth phase equation. 𝑋 = cell concentration (units of OD); 𝑋0= initial cell 

concentration at the beginning of the phase (units of OD); 𝑡= time; 𝑡0= time the phase starts (normally corresponds 

to the first time point within a growth phase); 𝜇= growth rate with units of 1/h or OD/h for exponential and linear 

growth, respectively.[17] 

X g glu/L/OD/h ∗  
1

0.30 
g DCW
L/OD

 

0.18 g glu/mmol 
 

Equation A2 – Conversion of substrate uptake rate units of g glucose/L/OD/h to mmol/g DCW/h. 𝑋 = Substrate 

uptake rate. 1 OD = 0.30 gDCW/L; Molar weight of glucose = 180 g glu/mol. 

 

 

 

 

Figure A1 – Highlight of the deleted reactions from the iUma22 model, made with the Escher building application. 
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Figure A2 – Addition of reactions and metabolites to fix dead-end reactions. Added reactions and added metabolites 

(green), reactions (blue) and metabolites (orange) already present in the iUma22 model. The original reactions are 

visualized by Escher software with building option.  

 

 

Figure A3 - Visualization of fluxes of the principal pathways that lead to MEL production in U. maydis, with 
maximization of biomass reaction, in the iUma22 model with Escher-FBA application. 
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Table A1 - In silico flux values calculated in COBRA toolbox in MATLAB. Predicted values with iUma22 model and 

model with deleted reactions of ustilagic acid production, with biomass reaction and MAC2 reaction optimized. The 

constraint applied was the input of the glucose flux of 2.20 mmol/gDCW/h (corresponding to 50 g/L of initial glucose). 

Conditions Reactions iUma22 model 
iUma22 model 
with deletions 

For Biomass 
maximization 

 
Glucose input (50g/L) = 

2.20 mmol/gDCW/h 

FBA Solution 0.169 0.169 

BIOMASS_REACTION 0.169 0.169 

EX_o2_e -0.011 -0.011 

EX_nh4_e -1.113 -0.796 

EX_pi_e 7.087 7.087 

EX_so4_e -0.014 -0.014 

EX_h2o_e -3.830 -3.988 

EX_glc__D_e -2.200 -2.200 

EX_gly_e 0.317 0.000 

EX_mal__L_e 1.332 1.491 

MAC2 reaction 
maximization 

 
Glucose input (50g/L) = 

2.20 mmol/gDCW/h 
 

FBA solution 0.317 0.317 

EX_co2_e 2.366 2.366 

EX_nh4_e -0.106 -0.106 

EX_h2o_e 3.383 3.383 

EX_glc__D_e -2.200 -2.200 

EX_mal__L_e 0.277 0.277 

EX_gly_e 0.106 0.106 

MAC2 0.317 0.317 

EX_MEL_D_e 0.317 0.317 

E4PK; ER; EMT1  MAC1; 
MAC2; MEL_Dte 

0.317 0.3171 

 


